Adept Events
  • Home
  • Event Info
    • Customer service / FAQ
    • In-house Info
    • Online and Live Streaming
    • Sponsoring
    • Terms and Conditions
  • Speakers
  • Contact us
    • Contact us
    • Customer service / FAQ
    • Call for speakers DW&BI Summit
    • About us
    • Newsletter
    • Materials upload
  • English
    • Dutch
Watch Video
Watch Video

Ontwerpen van een Nieuwe Data Architectuur

Stappenplan en best practices

Date Price Contact
November 11-12, 2025 € 1450 (ex. VAT) seminars@adeptevents.nl
+31 (0)172 742680
Time Location Downloads
9:30 - 17:00 Van der Valk Hotel, Utrecht
  • Data Architectuur.pdf
Next EditionTYPESocialLanguage
May, 2026 Face-to-Face @AdeptEventsNL Dutch spoken
Summer sale! Register multiple persons from one organization for the same event before August 31st and benefit from 15% early bird discount instead of 10%!
Date Price
November 11-12, 2025 € 1450 (ex. VAT)
Downloads Time
  • Data Architectuur.pdf
9:30 - 17:00
Location Contact
Van der Valk Hotel, Utrecht seminars@adeptevents.nl
+31 (0)172 742680
Next Edition
May, 2026
TYPE
Face-to-Face
Summer sale! Register multiple persons from one organization for the same event before August 31st and benefit from 15% early bird discount instead of 10%!
Date
November 11-12, 2025
Price
€ 1450 (ex. VAT)
Downloads
  • Data Architectuur.pdf
Time
9:30 - 17:00
Location
Van der Valk Hotel, Utrecht
Contact
seminars@adeptevents.nl
+31 (0)172 742680
Next Edition
May, 2026
TYPE
Face-to-Face
Summer sale! Register multiple persons from one organization for the same event before August 31st and benefit from 15% early bird discount instead of 10%!
EARLY BIRD
The Early Bird rate of € 1.305,00, VAT excluded, expires (*) on 12 October 2025. Register now and receive discount!
REGISTER
  • Overview
  • Course description
  • Registration fee
  • Speakers
  • Venue

Ontwerpen van een nieuwe data-architectuur

 

Digital transformation, datagedreven werken en de ‘informatie-economie’ zijn populaire termen in de boardroom. Ongeacht wat ze betekenen, deze termen houden in de basis allemaal hetzelfde in: de organisatie wil meer met data doen. Data moet breder, efficiënter en effectiever ingezet worden om bedrijfs- en beslissingsprocessen te verbeteren en te versnellen en hun competitieve kracht te vergroten. Technisch gezien betekent dit dat nieuwe vormen van datagebruik ingezet worden, zoals data science, selfservice BI, embedded BI, edge analytics en klantgedreven BI.

Helaas zijn de bestaande systemen die data leveren, zoals het datawarehouse en de transactionele systemen, dikwijls niet meer toereikend voor deze nieuwe, intensere en zwaardere vormen van datagebruik. De rek is uit de data-architectuur van bestaande data delivery systemen. Sommige van deze systemen zijn ook al meer dan twintig jaar oud en hebben veel veranderingen en extensies ondergaan. Ze kunnen de immer toenemende groei aan datagebruik qua schaalbaarheid en snelheid niet meer aan. Daarbij zijn ze log en inflexibel geworden waardoor het implementeren van nieuwe rapporten en het uitvoeren van analyses zeer tijdrovend is geworden. Kortom, de data-architectuur kan de huidige ‘speed of business change’ niet meer aan.
De conclusie van veel organisaties is dan ook: het is tijd voor een nieuwe, toekomstbestendige data-architectuur. Echter, dit is gemakkelijker gezegd dan gedaan. Een data-architectuur ontwerpen doe je immers niet regelmatig. Welke nieuwe technologieën zijn er momenteel beschikbaar? Wat is de invloed van o.a. Hadoop, NoSQL, big data, datawarehouse automation, data-streaming op de architectuur? Welke nieuwe architectuurprincipes zijn er eigenlijk? Hoe gaan we om met de steeds strengere regels voor data-opslag en analyse? En wat is de invloed van cloud platformen?

Dit tweedaagse seminar geeft antwoord op veel vragen die gesteld worden tijdens het ontwerpen van een moderne data-architectuur. Richtlijnen, stappenplannen, ontwerpcriteria, tips, ontwerpregels, use cases en praktijkvoorbeelden worden uitgebreid behandeld. Concepten en technologieën als data lakes, big data, datavault, cloud, datavirtualisatie, Hadoop, NoSQL, datawarehouse automation en anonimisatie van data komen hierbij ruim aan bod. Het seminar is gebaseerd op praktijkervaringen die de laatste jaren zijn opgedaan bij het uitdenken en realiseren van nieuwe data-architecturen. Daarnaast wordt aandacht besteed aan de organisatorische consequenties van een moderne data-architectuur en aan onderwerpen als data kwaliteit, data governance, data-strategie en de migratie naar een nieuwe architectuur.

Leerdoelen

In dit seminar met Rick van der Lans krijgt u antwoord op de volgende vraagstukken:

  • Welk stappenplan moet doorlopen worden om te komen tot een data-architectuur? Van wensen-analyse via proof of concepts naar een data-architectuur.
  • Wat is het belang van een holistische aanpak bij het bestuderen van technologie, organisatie en architectuur?
  • Wat zijn praktijkvoorbeelden van nieuwe data-architecturen?
  • Hoe kan het gebruik van technologie binnen een data-architectuur geoptimaliseerd worden?
  • Hoe stel je een data-architectuur op?
  • Uit welke onderdelen bestaat een data-architectuur?
  • Wat zijn de use cases, voor- en nadelen van nieuwe technologieën en hoe beïnvloeden ze data-architecturen?
  • Wat te doen met bekende referentie-architecturen, zoals de Lambda-architectuur, de logische datawarehouse-architectuur en het data lake?
  • Aan welke criteria moet een data-architectuur voldoen?

Bestemd voor ú

Dit seminar is voor een ieder bestemd die vanuit zijn functie te maken heeft met de ontwikkeling van nieuwe of het aanpassen van bestaande data-architecturen, waaronder BI-architecten, business-analisten, datawarehouse- en databaseontwerpers, database-experts, consultants, technology planners, projectleiders, CTOs en systeemanalisten.

Bovenaan de pagina bij Downloads kunt u de volledige PDF brochure downloaden.

Rick van der Lans

Managing Director
R20/Consultancy
Rick van der Lans is an independent analyst, consultant, author and internationally acclaimed lecturer specializing in data warehousing, business intelligence, and database technology. Rick helps clients worldwide to design their data warehouse, big data and BI architectures.

Read more

Van der Valk Hotel Utrecht
Winthontlaan 4-6
3526 KV Utrecht
Telefoon 030 8000 800

The hotel is very well accessible by public transport. From busstop ‘Kanaleneiland Zuid’ it is only a three-minute walk. You can take buses 63, 65, 66, 74 and 77 from Utrecht Central Station and you also take the tram line 20 or 21 from the train station and get off at stop ‘Kanaleneiland’. Please consult www.9292.nl (door-to-door journey planner, also available in English) or call 0900-9292 (travel advice by phone, € 0.70 p/m).

Van der Valk Hotel Utrecht is also located next to the highway A12, exit 17 (Utrecht / Jaarbeurs / Kanaleneiland).

Although the hotel has a large parking garage, we cannot guarantee parking spots. We therefore advise you to go by public transport.

For those who would like to arrive the day before, there is the possibility of staying at the Van der Valk Hotel Utrecht. However, the hotel does not provide special discounts for attendees of events. Therefore, when interested in an overnight stay, please consult Van der Valk directly to make a reservation.

More information about the hotel and the location can be found on their website www.vandervalkhotelutrecht.nl.

Detailed Workshop Outline

1. Introduction

Overview of Workshop Goals: Explain the importance of data as an asset and why organizations must move beyond treating data as just a service.
Solar System Metaphor: Introduce the concept of the data organization as a solar system, with data teams, governance, and accountability as key planetary bodies that need alignment for optimal performance.

Key Points:

  • Data as a core asset vs. a service
  • The relationship between data, digital, and AI – why they aren’t interchangeable
  • The balance between transformation and strong foundational structures in data management.Key Learning: Participants will understand why it’s essential to treat data as a core asset, setting the stage for exploring how to structure data teams and governance effectively.

 

2.  Data Accountability: Creating a Culture of Ownership and Responsibility

Why Data Accountability Matters: Without clear accountability, data quality, security, and data availability suffer.

  • The need for clarity in data ownership
  • Creating a culture where team members feel responsible for data
  • Defining clear data accountability and responsibility roles across the organization (Data Stewards, Data Owners, etc.).

 

Practical Steps to Ensure Accountability:

  • Setting up reporting structures for data quality
  • Understanding the value of Data Products and Data Contracts to codify accountability
  • Implementing checks and balances for data privacy and security
  • How to align individual accountability with organizational data goals.

 

Activity: Scenario-based discussion where participants identify where accountability is lacking in a fictional data-driven organization, and propose solutions for creating accountability.

Key Learning: Participants will gain insights into what data accountability entails, ensuring each team member knows their role in maintaining data quality and governance.

3. Data Governance Models: Federated Governance and Distributed Authority

Introduction to Data Governance: Why data governance is essential to manage risk, ensure compliance, and drive effective data use.
Federated Data Governance: What it is and how it works – balancing centralized oversight with distributed ownership across data hubs.

  • The Gravitational Pull of strong governance: Central authority ensures alignment, while decentralized teams maintain autonomy.
  • How to harmonize data governance policies across departments without losing agility.

 

Key Components of a Data Governance Framework:

  • Roles and Responsibilities
  • Data access controls and security measures
  • Compliance with legal and ethical guidelines (e.g., GDPR)
  • Continuous governance process for maintaining standards.

 

Activity: In groups, participants will design a federated governance model for a hypothetical organization, ensuring alignment between distributed teams and central governance.

Key Learning: Participants will learn how to implement a federated data governance model that balances control with autonomy, ensuring alignment across the organization.

4. Structuring Data Teams: Balancing Centralized and Distributed Needs

Discussion: Challenges in organizing data teams.

  • Centralized vs. decentralized data functions
  • Roles and responsibilities: What does a modern data team look like?
  • Data Science, Data Engineering, DataOps, Data Management, etc.
  • Balancing Innovation and Foundation: How do you organize a team that is both transformative (innovation-focused) and foundational (infrastructure-focused)?

 

Activity: Group exercise where participants design an ideal data team structure that addresses both distributed and centralized organizational needs.

Key Learning: Participants will learn how to create a data team structure that is flexible enough to meet both innovation-driven and operational demands.

5. Navigating Long-Term Sustainability: Lessons from NASA’s Mars Global Surveyor

Reflection: Insights from NASA’s Mars Global Surveyor and NASA’s Mars Climate Orbiter.

  • Long-term data management challenges
  • The importance of human involvement (Human-in-the-loop) in managing complex systems
  • Sustainability in data practices: How to ensure that your data organization remains agile and maintainable over time.

 

Key Learning: Participants will leave with strategies for ensuring long-term sustainability and scalability in their data governance and team structures.

6. Wrap-Up and Key Takeaways

Summarizing the Journey: Recap of the solar system metaphor and how the workshop’s concepts apply to real-world data challenges.

Key Takeaways:

  • How to structure data teams for maximum flexibility and impact
  • Ensuring data accountability through clear roles and ownership
  • Designing a federated data governance model to balance distributed autonomy with central oversight
  • Practical steps to create a sustainable, future-proof data organization.

 

Q&A and Next Steps: Open the floor for final questions and discussions about how participants can implement the lessons in their own organizations

Detailed Workshop Outline

1. Introduction

Overview of Workshop Goals: Explain the importance of data as an asset and why organizations must move beyond treating data as just a service.
Solar System Metaphor: Introduce the concept of the data organization as a solar system, with data teams, governance, and accountability as key planetary bodies that need alignment for optimal performance.

Key Points:

  • Data as a core asset vs. a service
  • The relationship between data, digital, and AI – why they aren’t interchangeable
  • The balance between transformation and strong foundational structures in data management.Key Learning: Participants will understand why it’s essential to treat data as a core asset, setting the stage for exploring how to structure data teams and governance effectively.

 

2.  Data Accountability: Creating a Culture of Ownership and Responsibility

Why Data Accountability Matters: Without clear accountability, data quality, security, and data availability suffer.

  • The need for clarity in data ownership
  • Creating a culture where team members feel responsible for data
  • Defining clear data accountability and responsibility roles across the organization (Data Stewards, Data Owners, etc.).

 

Practical Steps to Ensure Accountability:

  • Setting up reporting structures for data quality
  • Understanding the value of Data Products and Data Contracts to codify accountability
  • Implementing checks and balances for data privacy and security
  • How to align individual accountability with organizational data goals.

 

Activity: Scenario-based discussion where participants identify where accountability is lacking in a fictional data-driven organization, and propose solutions for creating accountability.

Key Learning: Participants will gain insights into what data accountability entails, ensuring each team member knows their role in maintaining data quality and governance.

3. Data Governance Models: Federated Governance and Distributed Authority

Introduction to Data Governance: Why data governance is essential to manage risk, ensure compliance, and drive effective data use.
Federated Data Governance: What it is and how it works – balancing centralized oversight with distributed ownership across data hubs.

  • The Gravitational Pull of strong governance: Central authority ensures alignment, while decentralized teams maintain autonomy.
  • How to harmonize data governance policies across departments without losing agility.

 

Key Components of a Data Governance Framework:

  • Roles and Responsibilities
  • Data access controls and security measures
  • Compliance with legal and ethical guidelines (e.g., GDPR)
  • Continuous governance process for maintaining standards.

 

Activity: In groups, participants will design a federated governance model for a hypothetical organization, ensuring alignment between distributed teams and central governance.

Key Learning: Participants will learn how to implement a federated data governance model that balances control with autonomy, ensuring alignment across the organization.

4. Structuring Data Teams: Balancing Centralized and Distributed Needs

Discussion: Challenges in organizing data teams.

  • Centralized vs. decentralized data functions
  • Roles and responsibilities: What does a modern data team look like?
  • Data Science, Data Engineering, DataOps, Data Management, etc.
  • Balancing Innovation and Foundation: How do you organize a team that is both transformative (innovation-focused) and foundational (infrastructure-focused)?

 

Activity: Group exercise where participants design an ideal data team structure that addresses both distributed and centralized organizational needs.

Key Learning: Participants will learn how to create a data team structure that is flexible enough to meet both innovation-driven and operational demands.

5. Navigating Long-Term Sustainability: Lessons from NASA’s Mars Global Surveyor

Reflection: Insights from NASA’s Mars Global Surveyor and NASA’s Mars Climate Orbiter.

  • Long-term data management challenges
  • The importance of human involvement (Human-in-the-loop) in managing complex systems
  • Sustainability in data practices: How to ensure that your data organization remains agile and maintainable over time.

 

Key Learning: Participants will leave with strategies for ensuring long-term sustainability and scalability in their data governance and team structures.

6. Wrap-Up and Key Takeaways

Summarizing the Journey: Recap of the solar system metaphor and how the workshop’s concepts apply to real-world data challenges.

Key Takeaways:

  • How to structure data teams for maximum flexibility and impact
  • Ensuring data accountability through clear roles and ownership
  • Designing a federated data governance model to balance distributed autonomy with central oversight
  • Practical steps to create a sustainable, future-proof data organization.

 

Q&A and Next Steps: Open the floor for final questions and discussions about how participants can implement the lessons in their own organizations

In-house Info

Practically all of our seminars and workshops can be offered as an In-house course for your company exclusively. We can tailor with extra focus on specific topics that apply to your organization. Also available in online format or in face-to-face format with live video stream.

MORE INFO

RELATED EVENTS

29-10-2025
Practical hands-on workshop

Transforming Data to Intelligence with Knowledge Graphs and Large Language Models

Empower Your Data Modeling and Analytics with AI-Driven Contextual Intelligence This workshop provides you with an in-depth understanding of the powerful synergy between knowledge graphs and LLMs to improve the way data is modeled, analyzed, and utilized. Participants combine theory with practical experience through hands-on exercises.

Panos Alexopoulos

 October 29-30, 2025

Utrecht

View

26-11-2025

Generative AI in Business Analysis

ChatGPT / CoPilot / Gemini for End-to-End Business Analyis Artificial Intelligence, undoubtedly one of the most ground-breaking technologies to date, is opening new doors for analysts with innovative tools and capabilities. OpenAI's ChatGPT, for example, can be applied in strategic, business and functional analysis in various ways. Hands-on workshop.

Christian Gijsels

 November 26, 2025

Utrecht

View

09-12-2025
Register now!

Concept Modelling and The Data-Process Connection

How Concept Modelling Supports Process, Business Analysis and Architecture Work [Virtual half day] Alec Sharp illustrates the many ways concept models (conceptual data models) support business process change and business analysis. And Alec covers what a data professional needs to know on business processes. [Half day virtual delivery.]

Alec Sharp

 December 9 - virtual half day

Your office or home office

View

BI-Platform

Business Intelligence, Data Warehousing, Big Data and Data Management Independent portal on Business Intelligence, Data Science & Analytics, Data Warehousing, Data Management and Big Data in The Netherlands. BI-Platform offers a wealth of content, such as blogs, interviews, videos, whitepapers and more.

View

27-10-2025
Hands-on workshop - register now!

Agile Data Warehouse Design & Dimensional Modeling

Collaborative BI Requirements Analysis & Dimensional Modeling Training A dimensional data modelling course presented by leading data warehousing expert and author Lawrence Corr, covering the latest agile techniques for systematically gathering Business Intelligence (BI) requirements and designing effective DW/BI systems. Based on 7W, star schema and BEAM approach.

Lawrence Corr

 October 27-29, 2025

Utrecht

View

03-11-2025
Practical workshop by Alec Sharp himself!

Business-oriented Data Modelling Masterclass

Balancing Engagement, Agility, and Complexity This data modelling workshop by Alec Sharp covers Entity-Relationship modelling from a non-technical perspective, provides tips and guidelines for the analyst, and explores contextual, conceptual, and detailed modelling techniques that maximize user involvement.

Alec Sharp

 November 3-5, 2025

Utrecht

View

25-11-2025
Practical workshop by Mathias Vercauteren

Data Governance Sprint

Setting up Data Governance in Weeks instead of Months Struggling with data governance implementation or team alignment? This game-changing seminar introduces the Data Governance Sprint — an efficient, structured approach to kick-start and sustain your data governance initiatives with confidence!

Mathias Vercauteren

 November 25-26, 2025

Utrecht

View

29-10-2025
Practical hands-on workshop

Transforming Data to Intelligence with Knowledge Graphs and Large Language Models

Empower Your Data Modeling and Analytics with AI-Driven Contextual Intelligence This workshop provides you with an in-depth understanding of the powerful synergy between knowledge graphs and LLMs to improve the way data is modeled, analyzed, and utilized. Participants combine theory with practical experience through hands-on exercises.

Panos Alexopoulos

 October 29-30, 2025

Utrecht

View

26-11-2025

Generative AI in Business Analysis

ChatGPT / CoPilot / Gemini for End-to-End Business Analyis Artificial Intelligence, undoubtedly one of the most ground-breaking technologies to date, is opening new doors for analysts with innovative tools and capabilities. OpenAI's ChatGPT, for example, can be applied in strategic, business and functional analysis in various ways. Hands-on workshop.

Christian Gijsels

 November 26, 2025

Utrecht

View

09-12-2025
Register now!

Concept Modelling and The Data-Process Connection

How Concept Modelling Supports Process, Business Analysis and Architecture Work [Virtual half day] Alec Sharp illustrates the many ways concept models (conceptual data models) support business process change and business analysis. And Alec covers what a data professional needs to know on business processes. [Half day virtual delivery.]

Alec Sharp

 December 9 - virtual half day

Your office or home office

View

BI-Platform

Business Intelligence, Data Warehousing, Big Data and Data Management Independent portal on Business Intelligence, Data Science & Analytics, Data Warehousing, Data Management and Big Data in The Netherlands. BI-Platform offers a wealth of content, such as blogs, interviews, videos, whitepapers and more.

View

27-10-2025
Hands-on workshop - register now!

Agile Data Warehouse Design & Dimensional Modeling

Collaborative BI Requirements Analysis & Dimensional Modeling Training A dimensional data modelling course presented by leading data warehousing expert and author Lawrence Corr, covering the latest agile techniques for systematically gathering Business Intelligence (BI) requirements and designing effective DW/BI systems. Based on 7W, star schema and BEAM approach.

Lawrence Corr

 October 27-29, 2025

Utrecht

View

03-11-2025
Practical workshop by Alec Sharp himself!

Business-oriented Data Modelling Masterclass

Balancing Engagement, Agility, and Complexity This data modelling workshop by Alec Sharp covers Entity-Relationship modelling from a non-technical perspective, provides tips and guidelines for the analyst, and explores contextual, conceptual, and detailed modelling techniques that maximize user involvement.

Alec Sharp

 November 3-5, 2025

Utrecht

View

25-11-2025
Practical workshop by Mathias Vercauteren

Data Governance Sprint

Setting up Data Governance in Weeks instead of Months Struggling with data governance implementation or team alignment? This game-changing seminar introduces the Data Governance Sprint — an efficient, structured approach to kick-start and sustain your data governance initiatives with confidence!

Mathias Vercauteren

 November 25-26, 2025

Utrecht

View

29-10-2025
Practical hands-on workshop

Transforming Data to Intelligence with Knowledge Graphs and Large Language Models

Empower Your Data Modeling and Analytics with AI-Driven Contextual Intelligence This workshop provides you with an in-depth understanding of the powerful synergy between knowledge graphs and LLMs to improve the way data is modeled, analyzed, and utilized. Participants combine theory with practical experience through hands-on exercises.

Panos Alexopoulos

 October 29-30, 2025

Utrecht

View

Adept Events
KvK Den Haag: 56059825
E: seminars@adeptevents.nl
T: +31 (0)172 742680
M: +31 (0)6 113 118 60
W: www.adeptevents.nl

Release
www.release.nl
@Release_nl
Download the Release App

BI-Platform
www.biplatform.nl
@BIPlatform
Download the BI-Platform App

© Adept Events is a registered trademark of Array Media B.V.
Share to Twitter Share to Facebook Share to LinkedIn
© 2025 Array Media b.v. - All rights reserved | Privacy | Disclaimer